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SUMMARY

This report describes the details of the work performed under Element A, "Im-

proved Numerical Methods for Turbulent Viscous Recirculatlng Flows," of NASA

sponsored Hot Section Technology (HOST) program. The objective in this study
is to develop accurate and efficient numerical schemes for predicting complex

flows.

Five discretization schemes were selected for preliminary evaluation based on

simple flows. These schemes were evaluated on the basis of accuracy, stabil-

ity, and ease of extension to multidimensions. This initial evaluation led to
the selection of three schemes--linear flux-spline, cubic flux-spline, and con-

trolled numerical diffusion with internal feedback (CONDIF) for further evalua-

tion in two-dimensional flows. The accuracy was assessed by solving a series

of test problems that included scalar transport, laminar flows, and turbulent

flows. The numerical results were compared with analytical solutions, experi-

mental data, and fine grid numerical solutions. For these test problems, the

linear flux-spline scheme was superior to other schemes and was selected for

incorporation into a computer program for three-dimensional flows. This scheme

was further evaluated by solving three-dimensional flows.

To improve the computational efficiency, a coupled solution approach for the

fluid flow equations was adopted. This algorithm was incorporated in conjunc-

tion with the linear flux-spline scheme. For two-dlmenslonal flows, this ap-

proach led to a factor of 2-3 reduction in execution times compared with the

sequential algorithms. To extend the coupled solution approach to three-dimen-

sions, a plane-by-plane solution strategy was followed. For sample flows, such

a procedure was robust and fast convergent.





I. INTRODUCTION

i.i OBJECTIVES

The overall objective of the hot section technology (HOST) aerothermal modeling

program--Phase II is to improve the accuracy of the current aerothermal models

for gas turbine combustors. Specifically Element A, Improved Numerical Methods

for Turbulent Viscous Reclrculatlng Flows, seeks improvements in the accuracy

of the differencing schemes and the computational efficiency of the solution

algorithms. Improvements in these areas would allow accurate predictions of

complex flows in a cost-effectlve manner without requiring an excessively large

number of grid points. Further, the use of improved differencing schemes,

which do not suffer significantly from the false diffusion problem, will allow

an objective evaluation of various models of gas turbine combustion processes.

1.2 APPROACH

The approach followed in this study was to select a number of discretlzatlon

schemes and solution algorithms and assess them on the basis of accuracy, com-

putational efficiency, stability, and ease of extension to multldlmenslons.

For this preliminary evaluation, test problems with known analytical solutions

were selected. Based on the results of these test problems, three dlscretlza-

tion schemes were chosen for an in-depth evaluation for two-dlmenslonal flows.

In addition, a coupled solution approach for the fluid flow equations was con-

sidered.

The selected differencing schemes were incorporated into computer programs for

two-dlmenslonal flows. The accuracy characteristics of these schemes were as-

sessed by solving a series of test problems, which included scalar transport,

laminar flows, and turbulent flows. The scheme with superior performance was

then combined with the coupled solution approach for the fluid flow equations.

For some sample flows, this coupled solution approach was compared with an

iteratlve sequential algorithm.

The selected discretizatlon scheme and solution algorithm were then incorpor-

ated into a computer program for three-dimenslonal flows. The improvements in

accuracy and computational efficiency were demonstrated by solving some sample

three-dlmensional test problems.

1.3 OUTLINE OF THE REPORT

In Chapter II, an overview of the finlte-volume procedure is presented. This

is followed by a brief description of the selected differencing schemes and

the coupled solution strategy. The results of these schemes for sample test

problems are presented. The schemes are evaluated on the basis of various cri-

teria mentioned earlier.

In Chapter III, the three differencing schemes with superior performance are

described in detail. In the development, the expressions have been given for

one coordinate direction 0nly; expressions in other directions can easily be

obtained by simple axis transformation.

In Chapter IV, the results of two- and three-dlmenslonal test cases are pre-

sented. For two-dlmenslonal problems, the numerical results have been compared

3
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with available analytical, experimental, and fine-grld numerical solutions.

The scheme with superior performance in two-dimenslonal situations was used to

solve three-dimensional problems.

In Chapter V, a coupled solutlon approach for fluid flow equations is de-

scribed. For sample flows the performance of such an approach has been com-

pared with that of an Iterative procedure.

In Chapter VIj the present work is briefly reviewed and suggestions for further

work are given.



II. DESCRIPTION OF THE SELECTED DISCRETIZATION SCHEMES

AND SOLUTION ALGORITHM

2.1 FINITE VOLUME METHOD

This section includes preliminary details of the finite- (control-) volume

method. The main objective of this discussion is to prepare a common frame-

work within which various schemes, to be discussed later, can be accommodated.

For ease of presentation, the development has been restricted to two-dimen-

sional steady flows in Cartesian coordinates.

The conservation equation for a dependent variable $ can be expressed in the

following general form (Ref i*):

%Jx +J_x = s (i)
8x 8y

where

Jx = pU¢ - r _
8x

(2)

Jy = pV¢ - r _-_
8y

(3)

r is the "effective" diffusion coefficient and S is the source of ¢.

Integrating equation (i) over the control volume around the grid point P (see

Figure I) gives:

Je - Jw + Jn - Jx = (Sc + Sp @p) Ax Ay (4)

where the source term S has been linearlzed. The quantities Je, Jw, Jn, and Js

are integrated fluxes over the control-volume faces. That is,

Je = IJx dy over the interface e

= (pU¢ - r 8_x)eAy (s)

To estimate the value of the flux at the control-volume faces, approximations

for the convected value @e and the gradient (8#/8x) e are needed. These two

approximations are the essence of any differencing scheme. A differencing

scheme, via a profile assumption for @, leads to an expression for the flux

at a control-volume interface that involves the values of @ at grid points

in the vicinity of the face. When the expressions for fluxes are substituted

in equation (4), an algebraic equation involving _'s is obtained. This equa-

tion can be expressed in a general form as:

ap #p = Z anb Cnb + bfl + bs (6)

*References are listed at the end of this report.
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Figure i. Control volume for the two-dimensional situation.

where nb refers to the neighbors of the grid point P under consideration (nb=

E, W, N, S), b s includes the physical sources, and bfl is an apparent source.

The expression for bfl involves either distant neighbors along a coordinate
line or adjacent lines or fluxes at control volume Interfaces.

2.2 DISCRETIZATION SCHEMES

The discussion of the discretization schemes selected in this study is mostly

qualitative. The mathematical details have been kept to a minimum. Instead,
emphasis has been placed on the features of each scheme that result in better

accuracy, the computational molecule involved, and the factors leading to spa-

tial oscillations and the possibility of lack of convergence.

The following five discretizatlon schemes were selected for a preliminary as-
sessment of their accuracy:

i. locally analytic differencing scheme (LOADS)

2. linear flux-spllne scheme

3. cubic flux-spline scheme

4. a modified central differencing scheme, CONDIF

5. mass weighted skew upwind differencing scheme (NNSUDS)

The Power-law differencing scheme (PLDS) has been chosen as the representative

of all lower-order schemes based on the one-dlmenslonal convectlon-dlffuslon

equation without a source.

2.2.1 Power-Law DifferenclnR Scheme (PLDS)

The Power-law differencing scheme (Ref i) is based on a curve fit to the exact

solution of one-dlmenslonal convectlon-dlffuslon equation in the absence of a

source. For the situation shown in Figure 2, the final discretization equation

may be expressed as:

6



ap Cp = aE CE ÷ aw ¢W ÷ b (7)

where

aE = D e A (IPel) + max [-Fe, 0]

aw = Dw A (IPwl) + max [Fw, 0]

ap = aE + aW - Sp Ax

b = S c AX
F = (pU)
D = r/6x

(8a)

(gb)
(8c)
(8d)
(8e)
(sf)

and

P = F/D (8g)

The function A( P ) is defined as:

A (tPi) = max [0, (1 - 0.11PI) 5] (9)

where max [ ] stands for the largest of the quantities contained within it.

Note that by a proper choice of A (IPI), other schemes can also be recovered.

For the commonly used schemes, function A (IPf) is listed in Table I.

Table I.

The function A (P) for various schemes,

Scheme A ( P )

Upwind

Hybrid

Exponential

Power-law

Central

1

max [ O, I-0.51PI]

P /[exp(IPI) -1]

max [ O, (1-O.11PI) 5]
1-0.51PI

u

w
0

- (_ x). -',
V

Figure 2.

o

(Gx).

E

0

TE884501

Grid configuration for a one-dimensional situation.



Since the Power-law differencing scheme is based on a purely one-dlmenslonal

flux balance, it is expected to perform well in the regions in which the flow

is aligned along the grid lines and in which convection is balanced primarily

by streamwise diffusion rather than cross-stream diffusion or sources. If such

idealized conditions are not encountered, the locally one-dimensional assump-

tion gives rise to significant numerical errors (false diffusion). The im-

proved schemes attempt to include the effect of flow-to-grid skewness, lateral

transport, and the source in the $-dlstribution between the grid points.

2.2.2 Locally Analytic Differencing Scheme (LOADS)

LOADS (Ref 2) takes into account the influence of the lateral transport pro-

cesses and source terms in the derivation of the _-dlstributlon between two

grid nodes.

The scheme is based on the solution of the equations:

8x (pu¢-r ) = IS - (pv¢-r )] = Kx (io)

_-- _ [S 8_x (pU# r 8_x)] Ky8y (pv¢ - r By) ....
(ii)

where Kx and Ky can be viewed as source terms for flows in x and y directions,

respectively. They take into account the actual source and the apparent source

in a given direction due to the net transport in the other direction. The

quantities Kx and Ky are evaluated from the numerical solution currently avail-

able and are assumed to be constant between two grid points. This leads to a

@-dlstrlbution along a direction (say x) of the form:

_b = A + B exp (r_-X) + Cx (12)

The coefficients in the final dlscretlzatlon equation are identical to those

resulting from the exponential scheme except for an additional source that is

a function of Peclet numbers in the x and y directions.

The computational molecule for LOADS involves 5 points in two dimensions (7

points in 3-D). The influence coefficients are always positive and the alge-

braic equations are diagonally dominant. The source terms Kx and Ky, however,

are calculated from nonconverged (incorrect) solutions and are treated expllc-

Itly. Such a practice may lead to convergence difficulties, especially if the

equations are strongly coupled. The presence of the apparent source may also

result in spatial oscillatlons in the numerical solution.

2,2,3 Linear Flux-Spline Scheme

The lower-order schemes, such as hybrid and exponential schemes, represent the

solution of the one-dlmenslonal convection diffusion equation with zero source.

These schemes, therefore, are based on the assumption of constant total (con-

vection and diffusion) flux within a control volume and do not respond to the

presence of sources or sinks and multidimensional effects. The linear flux-

spline scheme (Ref 3) removes this shortcoming by assuming a linear variation

for the total flux, as shown in Figure 3.

8
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Figure 3. Piecewise linear distribution of J.

Thus, the @-proflle in the x-direction for this scheme is the solution of

the equation:

8$ Ji+l-Ji (13)

pU¢ - r _ = Ji + Ax . x

Thls can be written as:

¢ : A + B exp (_r x) + Cx
(14)

where the coefficients A, B, and C can be expressed in terms of ¢i, Ji,

and Ji+l-

The influence coefficients for the llnear flux-spline scheme are identical to

those from the exponential scheme except that the linear flux-variatlon leads

to an additional source term. This source term involves the difference of

fluxes at the control-volume faces and thus allows the scheme to respond to

the presence of sources and multidimensional effects.

The principles underlying the linear flux-spllne and LOADS are very similar.

They differ only in the manner in which the multldlmenslonal effects are intro-

duced in the @-profile; i.e., the definition of the apparent source. In

LOADS the contribution of transport processes in other directions is calcu-

lated, within the iteratlve process, from the nonconverged flow and @-flelds.

The linear flux-spline scheme seeks a fleld solutlon for the fluxes also. Sop

during the iteratlve process, the fluxes are related to each other and satisfy

the conservation prlnciple; therefore, the llnear flux-spllne scheme is ex-

pected to be superior to LOADS. As with LOADS, the possibility of wiggles due

to apparent source also exists in the linear flux-spllne scheme. In addition,

the details regarding the computatlonal molecule are Identlcal to those for

LOADS.



2,2,4 Cubic Flux-Spline Scheme

The cubic flux-spline scheme (Ref 4) is an improved variant of the linear flux-

spline scheme. In this scheme, a cubic profile is assumed for the variation

of the total flux of @ and the mass flux (pU) within a control volume.

These assumptions lead to a @-profile of the form:

D_r 2= A + B exp ( x) + Cx + Dx + Ex 3 (15)

As for the linear flux-spline scheme, the cubic flux-spline scheme also in-

volves additional "flux" source terms that allow this scheme to respond to the
presence of the source and multidimensional effects.

The rather sophisticated assumptions involved in the cubic flux-spline scheme
make it computationally more complex than other schemes considered. The coef-

ficients are no longer simple algebraic function of the Peclet number but in-

volve numerical integration. In addition, field solution is required for the

fluxes and their derivatives as well as the derivatives of the mass fluxes.

Similar to the linear flux-spline scheme, this scheme also leads to a five-

point formulation in two dimensions. The presence of apparent source may lead
to wiggles.

Although the cubic flux-spline scheme involves more computatlonal effort than

other schemes, this disadvantage may be offset by its higher order of accuracy.

Thus for comparable accuracy, the cubic flux-spline scheme would require fewer
of grid points.

2.2.5 Controlled Numerical Diffusion with Internal Feedback (CONDIF)

CONDIF (Ref 5) is a modified central dlfferencinge scheme (CDS) that retains

the second-order accuracy of central differencing scheme but eliminates the

overshoots and undershoots that occur if the grid Peclet number exceeds 2.

The CONDIF modifies CDS by introducing a controlled amount of numerical diffu-

sion based on local gradients.

CORDIF uses central differencing for points at which the grid Peclet number is

less than 2. For points where the Peclet number exceeds 2 and the dependent

variable exhibits a monotonic behavior, the central differencing scheme is mod-
ified as follows (for I-D flows):

t

ap _bp = aE _E + aW @W + b (16)

where

a'E = aE, CDS + 4
[l(PU)eJ+ (PU)e] + Aw/R (17a)

= AW, CDS + [[(PV)wl- (PU)w]
4

+ A e R (17b)

Ae = [l(pU)ej + (pu) e] / 4 (17c)

I0



Aw = [I(pU)wl - (pU) w] / 4 (17d)

R = (8_lgx)el(8_/gX)w (17e)

In these expressions, a E CD_ and aw, CDS are the coefficients resulting
from the central differencing scheme. At the nodes where the Peclet number

exceeds 2 and the _-proflle is nov.monotonlc, the upwind scheme is used.

Since in most practical flows the dependent variables go through an extremum

only at relatively few points, CONDIF uses the central differencing scheme in

its original or modified form over most of the grid points. By using the CDS,
the numerical diffusion is reduced.

The computational molecule for CONDIF involves only 5 points in two dimensions.

The coefficients in the modified CDS become nonlinear since they Involve the
gradients of the dependent variable. As a result, the coefficients for a

linear problem need to be recomputed within the Iterative process. However,
the possibility of wiggles has been eliminated by adding controlled amount of

numerical diffusion in the regions of steep gradient. Unllke the previous
schemes, CONDIF does not involve any apparent source in the dlscretlzatlon
equation.

2.2.6 Mass-Weighted Skew Upwind Dlfferenclng Scheme (MWSUDS)

This scheme (Ref 6) seeks to improve the original skew upwind differencing
scheme (SUDS) (Ref 7), by ensuring the positivity of the coefficients and thus
eliminating the spatial oscillations.

Before presenting the details of MWSUDS, the cause of negative coefficients in

the skew upwind differencing scheme is analyzed. A typical control volume is

shown in Figure 4. For illustration purposes, the variation of the south coef-

ficient with the flow angle is examined. The value of _S will appear in

the convective fluxes through the east and south faces. The convective flux

through the east face is given by:

me¢ e = m e [Fxe _S + (i. - Fxe) Cp] (lS)

Similarly, the convective flux through the south face Is:

ms¢ s = ms [Fys Csw + (l. - Fys) Cs] (19)

In the above expressions, me and ms are the mass flow rates through the

east and south faces, respectively. Fxe and Fys are weighting factors defined
as:

Fxe =

V 6x/2
e

U 6y (20)
e

U 6y/2
S

Fys - v 6x (21)
S

ii
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From equations (18) and (19), the convective part of the south coefficient a s

can be obtained as:

a s = -m e Fxe + ms (i - Fys) (22)

The coefficient becomes negative when

me Fxe > ms (1 - _js) (23)

This may lead to a lack of boundedness. Note that the presence of negative
coefficient does not necessarily lead to wiggles in the numerical solution.

In MWSUDS, the coefficients are forced to remain positive (normegative in
strict sense) under all possible conditions. This is accomplished as follows:

i. The weighting of Ss from the east face and south faces are llnked.
This coupling is affected via the choice of veloclty component V e needed

for calculatlng the skew angle at the east face. In original SUDS, V e

is taken as the average of V at four neighboring points. In the modified

skew scheme V e is approximated as Vs .
2. The weighting factors are expressed in terms of face-skewed mass flow rate

components as:

Fxe --
(24)
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To ensure stability, the following condition should be satisfied:

m e Fxe i m s (i - Fys) (25)

Combining equations (24) and (25), the following relation can be obtained:

(26)

Therefore, an upper limit of 0.5 is placed on the skewness factor.

The computational molecule for MWSUDS involves 9 points in two dimensions and

27 points in three dimensions. Because of this, the trldlagonal matrix algor-

ithm (TDMA) may not be a suitable solver for the algebraic equations.

The modified scheme, like its original version, accounts for the flow-to-mesh

skewness but not for the effect of sources and cross-stream diffusion. It re-

duces to the upwind scheme for one-dimensional flows.

2.3 PRELIMINARY EVALUATION OF THE SCHEMES

The five selected schemes were used to solve a number of model one- and two-

dimensional problems. In this section, the relative performance of these

schemes is evaluated. The test problems considered are the following:

i. uniform flow in a pipe with a heat source

2. solid body rotation with logarithmic temperature distribution

3. recirculating flow with a prescribed heat source

In addition to the results from the selected schemes, results from two other

popular schemes, QUICK (Ref 8) and SUDS (Ref 7) have also been presented for a

relative assessment. These results have been taken from Reference 4.

2,3,1 Uniform Flow in a Pipe with a Heat Source

This problem consists of a uniform velocity flow in a pipe. A heat source

S = 1 + 2x + I] cos (fix) + [l]2 sin (IIx)-2]/P (27)

is prescribed such that the temperature distribution given by

Tex = i + x + x2 + exp (-P) exp (Px) + sin (rlx); 0 i x i i (28)

represents an exact solution to the governing equation.

= S (29)

This problem was solved for a range of Peclet numbers (P) using I0 uniformly

spaced control volumes in the computational domain. The results are presented

in Figure 5 in terms of the percent average error, Ear, defined by

! El(l- T /Tex)I* i00 (30)Eav = N c

13



I0 2
]o2 -

101

10 0

i lO 1

< 10"2

i0-3

10 -4

Pow_ r- 18w 101

pllne "

...... --- i0-i

Cubtc flux-spllne

/

o_
J

_°

i0-2

10-3

i I I|11111 I I 1111|ll I i l IIl|d 1 I I IIIIII

10-2 i0-I I00 i01 102

PecIet number, P

(a)

I0-4

10.2

Oulck
/

/" ..--LOADS

A I t I11tll I ] t l ilJll I t _ 11]_1 l I I 1_t111

10-I 100 101 102

Peclet number, P

(b)

4.0

, 3.C

w

°

t__.o
r..

i

- 1 + x + x2 + exp [-P (I - x)] + sln (fx)

CONDIF 11 x 11

0.0 : "- : ; I I , , ,,t I I

I0 -I I 10 10 2 10 3

Peeler number, P

(c)
TEBS-4212A

Figure 5. Average error for the one-dlmenslonal flow wlth a source.

14



where T c is the computed solutlon and N is the number of internal nodes.

In the low Peclet number range all schemes result in comparable errors with

the exception of the cubic flux-spllne scheme, which leads to errors that are
about two orders of magnitude smaller. Also, the errors for the linear flux-

spllne scheme, LOADS, and CONDIF are almost constant over the Peclet number

range considered. Other schemes, however, show an increase in the error as
the Peclet number exceeds 2.

2.3.2 Solid Body Rotation with Logarithmic Temperature Distr_butlon

This test problem, proposed by Runchal (Ref 9), involves heat conduction in a

fluid in solid body rotation. The geometry flow field for the problem is shown

in Figure 6. This flow situation is one-dlmenslonal in cylindrical coordi-

nates. However, when solved in Cartesian coordinates, the problem becomes

fully two-dimensional with finite convective and diffusive contributions.

The governing transport equation for this problem is

8x (pUT-r 88Tx)+8_y (pvT-r 8_y)= O
(31)

where U and V are the velocity components in the x and y directions, respec-

tlvely. For a solid body rotation, these are given by

U = 2y, V = -2x
(32)

For a uniform diffuslvlty, r, given by

r = i/P,
(33)

Figure 6.

y,V St ream11 nes
/ and

tsotherms

_ / Control

4_.... _'(Xl, x2)_ _ volume

) I I I I I I ._ x,U

TE8S-3OTSB

The solid body rotation problem: the geometry and control volume.
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the exact solution to the governing equations is obtained as:

In (x2 + y2)
Tex = 1 -

2 in 3 (34)

This problem was solved using I0 x i0 uniformly spaced control volumes. The

average error, Eav , In the numerical solution for the various schemes con-
sidered is shown In Figure 7.

All improved schemes, with the exception of MWSDS, perform considerably better

than the lower-order power law differencing scheme at hlgh Peclet numbers.

The cubic flux-spllne scheme performs exceptionally well, the error being al-

most two orders of magnitude smaller than that from other schemes. The perfor-

mances of linear flux-spllne, LOADS, CONDIF, and QUICK schemes are comparable

over the Peclet number range considered. The use of MWSDS leads to results

that are inferior to those from the Power-law scheme because of the inconsis-

tency In the flux expressions at the control-volume faces. That Is, the flux

expression obtained for the east side of a control volume is not the same as

the flux expression for the west slde of the next control volume. The validity

of the upwind mass flow approximation is also questionable for an arbitrary
flow field.

2.3.3 Reclrculating Flow with a Prescribed Heat Source

In thls test problem, transport of a scalar in a prescribed flow field is con-

sidered. The velocity field represents a reclrculating flow and is given by

u =-Uy (1 - y2) (i - x2) 2 (35)

V = +U-x (1 - x 2) (I - y2)2 (36)

A source S, defined as

S = P[4 - 2(x 2 + y2)] (37)

is prescribed such that the exact temperature distribution is given by

Tex = (l-x 2) (l-y2), -I i x, y i i (38)

This problem was solved using a uniform grid with 15 control volumes in each
direction.

Figure 8 shows the maximum normalized error in the computed solution from vari-

ous dlscretization schemes. For this problem, the flux-spline schemes give

results with mlnlmum numerlcal error. As with the previous problems, the cubic

flux-spllne Is sllghtly more accurate than the llnear flux-spllne scheme. The

performance of LOADS is not very different from that of the Power-law scheme
(PLDS).

Convergence problems were encountered wlth LOADS for P _ I00. Thls indicates

the dominance of the apparent source, which was approximated in a rather simple
manner.
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The results from CONDIF are not much better than those from the Power-law

scheme, especially at high Peclet numbers. The use of MWSUDS results in lower

numerical error compared with PLDS for P > i0.

2.4 SUMMARY

The selected convectlon-dlffusion schemes were used to solve three test prob-
lems for which analytical solutions are available. Based on the results of

these problems, the followlng general conclusions can be drawn:

i. The improved discretization schemes, with the exception of LOADS and

MWSUDS, produce more accurate results compared with the PLDS for all
problems considered.

2. The simple treatment of the flux-terms in LOADS may result in lack of

convergence, especially at higher Peclet numbers. The convergence behav-

ior is expected to deteriorate as the coupling between various equations
becomes stronger.

3. For the test problems considered in this study, the performance of

MWSUDS was not significantly superior to that of PLDS. As stated

earlier, this behavior may be a consequence of the inconsistency in the

discretlzed flux expressions at the control-volume faces.

4. The performances of LOADS and MNSUDS appear to be problem dependent.

5. Due to mild $-dlstributions in the selected problems, none of the

schemes produced spatial oscillations.

On the basis of these findings and other studies, e.g., Ref 3, 4, 5, the fol-
lowing three schemes were selected for an In-depth evaluation in two-dlmen-
sional flows:

i. linear flux-spline scheme

2. cubic flux-spline scheme

3. CONDIF

2.5 SOLUTION OF THE FLUID FLOW EQUATIONS

The solution of the fluid flow equations in the primitive variable formulation

requires special consideration due to the speclal role of pressure. The pres-

sure appears in the momentum equations, but there is no pressure term in the

continuity equation. Thus there is no equation for an explicit evaluation of

the pressure field. The commonly used Iteratlve methods based on SIMPLE (Ref

i) or its variants rewrite the continuity equation as an equation for pressure

or pressure correction and the equations are solved sequentially in a decoupled

manner. The performance of such an approach depends on a proper choice of the

underrelaxation factors and deteriorates as the number of grid points is in-
creased.

An alternative to the sequential SIMPLE-based approach is to obtain a direct

solution to the whole set of continuity and momentum equation using a sparse

matrix variant of Gausslan elimination. Such a method implicitly retains the

coupling between various equations and eliminates the need for an equation for

pressure (correction). This coupled approach has been used by Vanka and co-

workers (Ref i0, ii) and Braaten (Ref 12) for solving various sample flows in
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conjunction with a lower-order dlscretization scheme (hybrid and Power-law).
In all these studies the Yale sparse matrix package (YSMP) (Ref 13) was used

for the LU decomposition. The use of the direct solution strategy reduced the

computational times by factors of 5-10 compared with the SIMPLE algorithm. In
view of its impressive performance, the YSMP-based direct solutlon approach

was selected for improving the computational efficiency of the overall solution

algorithm.
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III. DESCRIPTIONOFSELECTEDDISCRETIZATION SCHEMES

In this section, the three selected convectlon-dlffusion schemes are described
in detail. Since the schemes are based on the solution of one-dimenslonal con-

vection-diffusion equation, most details have been restricted to a single di-

mension. The expressions for other directions can be obtained by an axis
transformation. The derivations have been presented for a general nonuniform

grid. By a proper specification of various geometrical parameters, the expres-
sions are valid for a scalar as well as the velocity components. For fluid

flow calculations, a staggered grid arrangement is used.

3.1 LINEAR FLUX-SPLINE SCHEME

_,i,1 0ne-Dlmenslonal Convectlon-Dlffusion

The steady-state form of the one-dlmensional convection-diffusion equation is

d.___J= S (39)
dx

where J is the total flux (convection and diffusion) of the dependent variable

_, and S is the source or slnk of _. The total flux is given by

J = pU¢ - r d__ (40)
dx

To obtain the variation of $ within a control volume, a profile assumption

for J is required. The lower-order methods, such as the exponential scheme,
assume that the total flux is uniform within a control volume. Such an assump-
tion leads to a llnear profile for _ In the conduction-like problems and an

exponential profile in convectlon-dlffuslon problems. Due to this assumption,

the resulting schemes do not respond to the multidimensional effects and the

presence of sources. The linear flux-spllne scheme is based on the assumption

that the total flux varies in a plecewise linear manner as shown in Figure 9.

Thus for a control volume around the grld point i, the total flux is given by

J = Ji + (Ji+l - Jl) (x/_xl)
(41)

']I+2

31 + 1/

,11_
j I I

, laX- , AX+ !

,
I I I

--'0 ' 0 ' 0 i O i Q---
I

t - 2 ' I - 1 I_....x t I I + 1 t + 2
I I

i.,_---_x 1----.4 TE84-1679A

Figure 9. Plecewlse linear distribution of J.
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If the expression for J is substituted in equation (41), a differential equa-

tion governing the variation of _ is obtained. The solution of the resulting

equation requires the variation of the dlffuslvlty r and the mass flux (pU).
These quantities are assumed to be uniform over a control volume. Wlth this

assumption, the following expression for @ results:

@i = A + Bx + C exp (pux/r) (42)

where

(pU)i

t Ji+l-J_ rl

+ ,(pu) i Ax i) (pu) i
(43a)

B = Jl+l-Ji

(PU) i Ax i
(43b)

E JiC = @i - (pV)i
Ji+l-Ji IAx rl _- (Pv)iAxi) i+ (pv)17j exp (-P_) (43c)

(PV)i _i
P_ =

rl
(43d)

Equation (42) gives the variation of @ within a control volume. For two ad-

Jacent control volumes, the _-profiles are such that they imply the same to-

tal flux at the common interface. In addition, they must also give a unique

value of @ at the common interface. With reference to Figure i0, this condi-
tion is:

where _T and $_ are defined as the values of _ at the left and

right interfaces, respectively, of the control volume around the grid point i.

From equations (42) and (43)

¢i = ¢i • + A(-Pi) ri Ji - _i r_ (Ji-Ji+l)c (-P_) (4s)

Ji - I

4_I - I 4'I

' ,IJl I Jl + 1

' I I
I - 1 I TE84-1680A

Figure i0. Two adjacent control volumes.
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+
Pi_+l I Axi_ I

¢i+i = ¢i-1 e
A(_Pi++l) rl_l Jl

where

(&_i_l)2 1

+ Axi_ 1 ri_l (ji-Ji_l) G(PI_I) (46)

÷
+ (PU)i- I Axi_ 1

PI-I - rl_ I
(47)

A(P) = P (48)

eP_l

G(P) = eP(P-I) + I

p2
(49)

Combining equations (43) to (49), the expression for flux Ji can be written as

Ji = (Di $i-1 - Ei $i ) + Bi (Ji-Ji+l) + Ci (Ji-Ji-1) (50)

where

D i = H i exp (Pi+l)_ (51)

and

E i = Hi exp (-Pi)

B i = Ax i ri H i G (-Pi)

(_Xi_l)2 1

Ci Hi G (Pill)
= Axi_ 1 ri_ 1

(52)

(53)

(54)

H i = A(_Pi)

+ (55)

ri_I A(Pi+ 1)

In equation (50), the expression (D i ¢i-i - Ei ¢i) is identical to that ob-

tained from the lower-order exponential scheme, The terms involving B i and C i
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are additlonal contributions of the flux-spllne scheme based on the linear

variation of the total flux.

For ease of presentation, let

Jli = Bi (Ji - Ji+l) + Ci (Ji - Ji-l) (56)

so that equation (50) may be expressed as:

A

Ji = (Di @i-I - Ei ¢i) + Jli (57)

In this derivation, the mass flux (pU) was assumed to be uniform within a

control volume. To allow for variable mass flux, a correction term is added

in the flux expression. The choice of this term is such that the governing

equation will be exactly satisfied for a situation in which @ is uniform and

(pU) varies linearly. Wlth this additional term, the quantity _i I in equa-

tion (57) is redefined as

= B i l(Ji-Ji+l) - [(pU) i - (PU)i+ 1] _t I

+ ci IcJi- Ji_l) - [(pu)i - (pu)i_I]  i_II (ss)

Note that the spline contribution _i i to the total flux is based on the dif-

ferences in the J values at the adjacent faces of a control volume. Thus, a

difference in J indicates the presence of a source and/or multidimenslonallty

(a change of flux in one direction is felt as a source term in another direc-

tion).

3.1.2 Discretizatlon Eouation for

The governing equation (39) can be integrated over the control volume around

the point i to yield

Jt+l - Ji = S Ax t (59)

The fluxes Ji and Ji+l are replaced by the corresponding expressions from

the linear flux-spllne scheme, e.g., equation (57). The resulting discretiza-

tlon equation for _ is

ap $i = aE $i+I + aN $i-i + Sc _xi + _

where

(60)

aE = Hi+ 1 exp (-Pi+l) (61)

aW = H i exp (Pi+l)_ (62)

ap = aE + aW - Sp Ax i

= (_li-_li+l)

(63)

(64)
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In this last derivation, a linearized form of the source term S has been as-

sumed, that is

S = S c + Sp $i (65)

with

Sp < 0

The influence coefficients aE and aN appearing in the discretization equa-

tion resulting from the linear flux-spline formulation are identical to those

obtained from the exponential scheme. The contribution of the flux-spline is

contained in the term S.

_,i._ Extension to Nulti-Dimensional Situations

In this section the extension of the linear flux-spline scheme to multidlmen-

sions is presented via the two-dimensional situation. The details for three-

dimensional flows are very similar.

For a two-dimensional situation, the conservation equation for the control vol-

ume around the point (i,j) (Figure ii) is:

(JXi+l, j - Jxi, j) AY

+ (JYi,j+l - JYi,J) Ax = S Ax _y
(66)

!

I

I

,lx t-1. J I'_
/

I
I
I
I

Jxt. J

C)
#t - 1, j

( j + I

I
I
I

___Jx t+2, J

I
I
I
I

TE84-1681A

Figure Ii. Control volume in two dimensions.
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The fluxes Jx and Jy are calculated using the one-dimensional flux-spline for-

mulation in x and y direction, respectively. Thus, Jx and Jy are given by

Jxi,j = (Dxi ¢i-1,3 - Exl ¢i,j ) + Ylxt,j (67)

JYi,J = (Dyj el,J-1 - Eyj ¢i,j ) + _lYi, j

The final expression for ¢ is:

(68)

ap @i,J = aE ¢i+l,J ÷ aw _i-l,J ÷ aN _i,J+l

+ ScAXAy +S

+ as ¢i,J-1

(69)

where

aE = Hxi+ 1 exp (-PXi+l) Ay (69a)

aw = Hx i exp (PX__l) Ay (69b)

aN = Hyj+ I exp (-PYJ+I) Ax

a S = Hyj exp (PY_-I) Ax

(69c)

(69d)

ap = aE + aw + aN + as - Sp Ax Ay (69e)

S = (Jlx i - Jlxi+ I) Ay (69f)

+ (Jlyj - Jlyj+l) Ax

In equation (69), the descriptors x and y have been added to various quantities
to denote the appropriate directions. These quantities can easily be obtained

by substituting the appropriate directional parameters in the expressions de-
rived earlier for one-dimensional flows.

@,i,4 Solution Procedure

A two-dimensional situation is governed by three field variables, $, Jx, and

Jy. These variables are governed by the following three sets of equations:

i. conservation equation for #

2. spline continuity condition in the x-direction

3. spline continuity condition in the y-direction

Note that the spline-continuity conditions are one-dimensional in nature de-

spite the multidimensional character of the whole problem.

The relationship between the dependent variable _ and its fluxes Jx and Jy
is very similar to that encountered between pressure and velocity components

in fluid flow calculations. The spline-continuity conditions give equations

for the evaluation of flux fields. These equations involve $. The $-field

should be such that the resulting fluxes satisfy the conservation equation for
_. Thus, the fluxes are analogous to the velocity components and the role

of ¢ is similar to that of pressure. Further, it should be noted that the
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derivation of the @-equatlon from the conservation of $ and the flux equa-

tions is parallel to that of pressure in SIMPLER algorithm by combining the

continuity and momentum equations. Based on these similarities the following

procedure can be used for a coupled solution of Jx, Jy, and @.

A

1. The flux terms Jlx and Jly are set equal to zero and the @-equatlon is
solved. This solution will be identical to that from the (lower-order)

exponential scheme.

2. The computed @-fleld is used to obtain the fluxes Jx and Jy.
3. These flux flelds are used to compute _lx and _ly.

4. The @-equatlon is solved with the spllne contribution to the source

term.

5. New Jx and Jy flelds^are obtalned^ from the new @-fleld and the currently
available values of Jlx and Jly using equations such as (57).

6. Steps 3 through 5 are repeated until convergence is achieved.

Note that a field solution for the fluxes is not performed. Instead, the

fluxes are updated in an Iteratlve manner (Jacobl update).

3.1o5 Fluid Flow Calculatlons

The derivation previously presented is valid for the momentum equations also.

Apart from the appearance of an additional source term due to the llnear flux

assumption, the dlscretlzatlon equation is similar to that from a lower-order

formulation.

The solution of the fluid flow equations involves a means of coupling the con-

tinuity and momentum equations. These steps are identical to those used for a

lower-order formulation and hence are not presented here.

3,1,6 Notes on Computer Implementation

i. The expressions for coefficients in the linear flux spline formulation In-

volve the followlng two functions of the Peclet number:

P
A(P) =

eP_l

eP(P-1) + 1

G(P) = p2

If these expressions are used as such, the influence coefficients for
linear flux-spline scheme are identical to those from the exponential
scheme. To avoid the evaluation of computationally expensive exponentials,

these expressions have been approximated by the following algebraic rela-
tions:

A(P) = max [0, (i - 0.i ]P ])5] + max [-P, 0] (70)

G(P) = Q (P)/A (P) (71)
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where

Q (P) = 0.5 [i + SGN (P)] - SGN(P) Q (- P ) (72)

and

Q (_ p ) = 0.5 - (0.ii P )2 _ (0.25454 P )6

1 + P 16 + (0.25454 P )6 p
(73)

With these new relations, the flux-spline scheme reduces to the Power-law

differencing scheme under the assumption of constant flux within a control
volume.

. The derivation of the flux-spline scheme is based on the assumption of a
uniform diffusion coefficient within a control volume. The diffusion coef-

ficients are stored at the main grid points (scalar locatlons) and are as-

sumed to be constant over the control-volume around the grid point. Due

to the staggered location of the velocity components, an estimate of the

dlffuslvlty over a velocity control volume is required. In addition, an
interpolation is needed to evaluate the mass fluxes at the faces of the

velocity control volumes. The practices used in the present implementatlon

are as follows. Consider the U-control volume shown in Figure 12.

The diffusion coefficient for Ui, j is taken to be:

r u ri..1÷  i-*lri-i..1 (74)

The mass flux at the west face is

(pU) w = [(PU)i, j + (PU)i_l,j]/2 (75)

-- ,_ U,+LI

TE88-4503

Figure 12. Definition of a u-control volume.
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and the mass flux at the south face is

(PV) s

(pv)i_l,i _xi+_l+ (pv)i,.1_x_ (76)

3.2 CUBIC FLUX-SPLINE SCHEME

The cubic flux-spline scheme is an improvement over the linear flux-spline

scheme presented in Section 3.1. Similar to the linear flux-spline scheme,
the details of the cubic flux-spllne scheme are first presented for one-dlmen-

sional convection-diffuslon situation. This is followed by the details related

to its extension to multidimenslons.

3.2,1 One Dimensional Convection Diffusion

In cubic flux-spline scheme, the total (convection + diffusion) flux (J) and

mass flux (pU) are assumed to vary according to a cubic profile within a con-
trol volume. For the control volume around point i, these are given by:

J =Ji+ Ji+l-Ji _ (____)2]- [Axl-Axi + [Ji _xi (Ji+l-Ji)]

3 2

, , x x ]
+ (Ji+Ji+l) Axl-2(Ji+l-Ji ) [(Ax i) - (Ax i)

(77)

pU = (pU) i + (pU) t x + 3[(PU)i+I-(PU)t]

t !

- [2 (pU) i + (PU)i+ 1] Ax i

3
x (78)

-2 [(Pu)i+1 - (pu)i] I (Axi)

where J'i and (pU)' i are the derivatives of J and (pU), respectively, at the
control-volume face. For ease of preaentatlon, these equations are rewritten

as:

J = PO + Pl x + P2 x2 + P3X3 (79)

(pU) = qo + ql x + q2 x2 + q3x3 (80)

Substituting equations (79) and (80) in the definition of total flux, J,

J = pu¢- r _ (81)
dx
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and integrating, with uniform diffustvity r, the following expression for
¢ results:

= A - exp (Ip(x)dx)/(C 0 + C1 x + C2x2
¢

+ C3X3) exp (- Ip(x) dx) dx

where

(82)

p(x) = DO + DlX + D2x2 + D3x3

Ct = Pi/r' i

D i = qi/r, i = 0,1,2,3

The constant A in equation (82) Is evaluated using the condition for ¢ at
the maln grld point

(83)

(84)

¢ (x = Axi) = ¢i (85)

The expression for total flux J Is obtained by imposing the contlnulty-of-¢
condition at a control-volume interface

¢i = ¢_-1 (86)

After considerable algebra, the final expression for J can be written as (Ref
4):

A

Jl = DI (¢i-i gi-i - ¢igl l) + Jl + 33

where

(87)

A

Jl = B i (Jl - Jl+l) + CI (Jl - Jl-l)

j_x3 = [B2 i ['Ji+l-JI-Axi ) - J_] Ax i

J'-Ji "
C21 ! +i. '

+ [( AXl_ 1 ) - Ji_l ] AXl_ 1

(88)

2(Ji-Ji+l) (j_ + Ji+l )]+ B31 [ Ax I + ' AXt

[2+ C3 t (JI-Jl-I) (j_ + , )] +
Axt_ 1 - Ji-1 Axt-1

(89)

+ Ax'i 1 -I
Dt [_ gt-1 __

= ri_1 Ill_ 1 - ri I-_i]
(90)

Bt =

2

(Ax i) D i I2 i

r tax t I1 t
(91)
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Ci =

2

(_Xi_l) Di 121-i gi-i

ri-i _xi-1 lli-I

&x i
B2 i = -- B i - EP i

Ax i

&xt_ 1
C2i = Ct - EMt

&xt_+1

3

(axe) Di I4 t

B3 i = EP i - (Axi)2 r t I1 i

C3i = 2EM I

3

(Axi+ 1 )

2
(Axi_ 1)

Oi 14i_ I _ [AXi-l_ci

ri_1 Ill_ 1 _/kXi_l/

EP i =

2

(Ax i) Di T31

ri &x i Iii

EM I =

2

(hxi_l) Di 131-I gi-1

ri_ Lixi_1 lli_ 1

ii-I =
1

I
0

Io dq

12 = Ii
i

Sn
0

Io d_

13 = II

i
I n2 Io dn

0

14 = II

I

I n3 Io dn

0

Io = exp [-(an + bq 2 + cn3 + dq4)]

8 = exp (a+b+c+d)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)

(1oo)

(lOl)

(102)

(103)

(lO4)
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(pU) i Axi (i05)

ai = Fi

!bl (pu i-%
= 2 T t

=_3 (PU)I+I - (PU)t
C i

Ax i
- 2[(pU)_ + (pU)_+ 1 ]}

2

3 Ax t T t

, , (PU)I+I-(PU) i

di = I[(pu)i+ (pu)i+1]- 2 [ A_i ]I

3

4(Axi)2 r i

al_ 1 (PU)t_ 1
= rl_ 1

- (2bl_ 1 + 3ct_ 1 + 4dl_ I)

[(pu)_- (pu)]i_1 _i+1 _i+1
= -1.5

bl-1 Axl_ 1 2 rl_ 1 ci-1

-1.5ct_ 1 (i - fl-l)

-2dt_ 1 (1+f_-i)3

(l+q_1)

+ +

c = [(pu)' - (pu)' ] Ax_-i
i-1 i t-1 6 (1 + f_-l) rt-z

- 2dl_ 1 (1 - fl-l)

(lO6)

(107)

(1o8)

(lO9)

(110)

(zzz)
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[(pU)i- (pU)i_ 1]

di_ 1 I[(gU)i_l + (9U)_] - 2 1= Axi_ I

+ Ax +
i-I

4 (i ---2D_--_ 2
+ fi_l ) ri_ 1

(112)

fi-i =
(113)

The expressions in other directions can be derived by axis transformation.

The integrals in equations (99) to (102) are evaluated numerically. These de-

tails can be found in Ref 4.

The expressions presented previously involve the derivatives of the total flux
and the mass flux. These derivatives are evaluated by solving the spllne rela-

tionship between a cubic function and its derivative. The derivative of the

total flux is obtained from the equation:

[ t J' 1 1 L_i_+/

J i-_._ll+ 2 + J; + i
Axi_ I Axi_ I

Ji+l - Ji Ji - Ji-i
=3 +3

Axi2 2Axi_ 1

The relationship for (9)' is obtained by replacing J by (9U) in equation

(114).

(114)

_,2,2 Discretizatlon Equation in Two Dimensions

The discretlzatlon equation for _ is now obtained by substituting the flux

expression, equation (87), in the conservation equation for ¢, equation (66).

The general ¢ dlscretlzation equation is:

ap @i = aE ¢i+i + aw ¢i-i + aN Cj+l + as ¢J-i + b
(115)

where

aE = DXi+l, j ll_xi+l,J

aN = DYi,J+I llgYl,J+l

, aw = DXi, j 8Xi-l,J

, as = DYi, j gxi,J-i

ap = aE + aw + aN + as - Sp Ax i Ayj + B

b = SC Ax i Ayj + bad

B = max [alw,0] + max [-alE,0] + max [als,O] + max [-alN,0]

(116)

(117)

(118)

(119)

(12o)
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bad = JCi,j Axl Ay_

+ [(JlXi,j + J3Xi,j) - (JlXi+l,j + J3Xi+l,j)] Ayj +

+ [(JiYi, j + J3Yi, j) - (JIYi,j+ 1 + J3Yi,J+l)] Ax i

+ {max[-alw,0] + max[alE,0] +max [-als,0 ] + max[alN,0] } ¢i (121)

alw = (pu)i,j Ayj - (aw,(i,j) -aE, (i-l,J)) (122)

al E = (PU)i+l, j Ayj - (aw,(i+l,J)-aE, (i,J)) (123)

als = (PV)i,J _xi - (as,(i,J) -aN, (i,J-1)) (124)

alN= (PV)i,J+l Axi - (as,(i,j+l)-aN, (i,j)) (125)

where all definitions given for the x direction, equations (87) through (I14),
should be applied for a line of constant J and analogous expressions should be
used for the y direction.

In the derivation of the flux balance over a control volume, it is generally

assumed that the flux at the midpoint of a control-volume face prevails over

the entire face. Further the value of the source at the grid point is assumed

to prevail over the entire control volume. These approximations reduce the

accuracy of the cubic flux-spline scheme. To compensate for this adverse ef-

fect on accuracy, an addltlonal correction term JCi,J (Ref 4) is added in the

flnal discretlzation equation. This term is evaluated by ensuring that the

conservation equation is exactly satisfied at the main grid point and involves
the fluxes and their derivatives.

3.2,_ Solution procedure

The main steps in the solution procedure for the cubic flux spline scheme ap-
plied to convectlon-dlffuslon problems are as follows:

i. guess a @ field

2. set all fluxes and flux derivatives equal to zero

3. set all mass flow rate derivatives in the x and y directions equal to
zero

4. solve equation similar to (114) with the TDMA algorithm to obtain the
pU), field

5. solve an equation analogous to (114) with the TDMA algorithm to obtain
the pV)' field

6. calculate all flux coefficients, equations (90) through (113) for the x
directions and analogous expressions for the y direction

7. form all neighbor coefficients, equations (116) and (117), where all

integral functions are numerically evaluated by the use of a six point
Gauss Quadrature

8. calculate JiX and _3X, equations (88) and (89), by using the available

@, Jx, and J'x fields. Proceed in an analogous way for the y direc-

tion. Form the source term b and the ap term for the _ equation
using equations (118) through (125)

9. solve the @ equation (115) by the llne-by-line TDMA algorithm
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i0. calculate new fluxes for the x direction from equation (87), where all

neighboring Jx and J'x values are assumed known; proceed in an analogous

way for the y direction

solve the J'x equation (114) by the TDMA algorithm and similarly solve

for J'y

check convergence (If convergence has not been attained, one must repeat

the process by going back to step 4. If the flow field is given and if

the coefficients are constant, repeat the process going back to step 8.

If the coefficients are constant, the process must be repeated from step 8 to

avoid recalculating the integral functions.

3.3 CONTROLLED NUMERICAL DIFFUSION WITH INTERNAL FEEDBACK (CONDIF)

CONDIF is a modified central differencing scheme (CDS) that eliminates the

over- and undershoots associated with CDS but retains its accuracy even at high

Peclet numbers. CONDIF modifies the CDS by introducing a controlled amount of

numerical diffusion based on the local gradients. For most problems, the

numerlcal diffusion can be adjusted to be negllglbly low.

Since the CDS forms the basis of CONDIF, the development begins with a discus-

sion of CDS. This is followed by the essentlal features of CONDIF. Like the

derivation of other schemes, the analysis begins with one-dlmenslonal transport

of a scalar.

3,3,1 Central Difference Scheme

The one-dlmenslonal convectlon-dlffuslon equation is

dJ = s (126)
dx

where

J = pu¢ - r _
dx

(127)

In CDS, the values at a control-volume face are obtained using a plecewlse

linear profile for @. Thus, the values of _ and (d@/dx) at the west face

of the control volume around point i (see Figure 13) are

= 6x i ¢i-I + 8x i

(12s)

d@ ¢i--¢i_i

w 8Xl

(129)

The dlscretlzed conservation equation is given by

Je-Jw= S Ax (13o)
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Figure 13. A one-dlmenslonal situation.

Substituting for the fluxes, the final C-equation can be written as:

ap ¢i = aE ¢i+i + aw ¢i-i + b

where

re
aE - 6Xi+l 2

Fw PU w

(131)

(132a)

(132b)

ap = aE + aw (132c)

b = S Ax (132d)

For P (=pusx/r) > 2, the coefficients in CDS become negative resulting in
over- and undershoots in the numerical solution. CONDIF is a modified central

differencing scheme that retains the essential features of CDS but ensures

positivity of the coefficients.

Consider the coefficients aE and aw; these may be expressed as

aE = a_ - A e (133)

and

aW = a_ - A w (134)
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where

a_ = rel(6x)i+ 1 + [l(pU)el - (pU)e]/4 (IS5)

a_ = rw/6X) i + [l(pU)wl + (pU)w]/4 (136)

Ae = [ I (PU)e I + (pU)e]/4 (137)

Aw= [l(pU)wl - (pU)w]14 (138)

Note that a_ and a_, Ae, and Aw are all unconditionally positive.

Equation (131) may now be rearranged as:

(a_ + a_) $i a*= z ¢i+1 + ¢i-1 (139)

+ Ae (@i - ¢i+i) + Aw (¢i - ¢i-i) + b

In equation (139), the terms involving A e and Aw need special consideration
if these terms are treated implicitly, the original CDS is recovered and oscil-

lations are encountered in the numerical solution. Due to the dominant con-

tribution of these terms at high Peclet number, an explicit treatment (i.e.,

as a source term) is also not feasible. The CONDIF scheme restructures this

equation based on the local gradients of the dependent variable.

3.3,2 Alternate Representation of CDS

In equation (139), the term involving Aw may be expressed as

Ae (¢I - ¢i+I) = Ae R (¢I-i - _i); ¢i # ¢i-i (140)

where

R = (¢i - #i+1)/(_i-1 - #i) (141)

Similarly, the term Involvlng A w may be rearranged as

Aw (#i - #i-i) = Aw (@i+l - @i)/R; @i+l # @i (142)

The special cases when #i equals #i+1 or @i-i are discussed later.

Equation (139) may now be written as:

(a'E + a'w) _I = a'E ¢I+i + a'w _i-i

with

a,E = a* E + Aw/R

a'W = a*W + AeR

(143)

(144)

(145)
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Equation (143), for all practlcal purposes, Is Identical to equation (139) and

Is another representation of CDS. Also all terms In Equations (143), except
R, are unconditlonally positive.

3.3.3 Derivation of CONI)IF Scheme

An examination R in equation (141) shows that, with reference to Figure 13, It
may be written as

R " (8@IBx)el(8@lgx)w (146)

R is proportional to the ratio of the gradient of @ at the control-volume

faces e and w. Finding the conditions under which R may become negative Is

now possible. For a monotonlcally increasing and decreasing function, R would

always be positive. It is only for a function going through an extremum (a

maximum or a minimum) within the control-volume around P that R becomes
negative.

In most fluid dynamic calculatlons, the dependent variables exhibit a monotonic

behavior at most of the grld points; It Is comparatlvely at a few grld points

that the variables go through an extremum. With this observation, the CDS Is
modified as follows.

.

2i

.

For all the grid points where the grid Peclet number Is less than or

equal to 2, the CDS Is used In the form given by equations (131) and
(132).

For the case where the grid Peclet number exceeds 2, the CDS is used In

the form given by equations (143) to (145); if the R-parameter Is posi-
tive, otherwise.

The upwind scheme is used.

The suggested modification of CDS ensures the positivity of coefficients and

hence ellmlnates the over- and undershoots. Note that the Influence coeffi-

cients now become quasi-llnear. This Is because the R-parameter represents

the ratio of the gradient of the dependent at the control-volume faces.

The parameter, R, may assume very high values if sharp variations In the gradi-

ent of the dependent varlable exist. Conversely R may approach a value of zero

If @ Is locally constant (@I = @I-I or @I+1)" These cases repre-

sent either a slngularlty in the governing equation or a trlvlal solutlon (@
= constant). Therefore, a llmlt on the R-parameter is imposed so that

_i__
e _ce _CRmax (147)

max

where Rma x is an arbitrary number. It determines the amount by which the

gradient of the variable may change from one grld point to another. The

parameter Rma x plays the role of introducing a controlled amount of numeri-
cal diffusion in the numerical diffusion.
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The modified scheme previously described is named CONDIF (COntrolled _umerical
Diffusion with _nternal _eedback). The numerical diffusion comes from the

limit imposed on the R-parameter; the feedback refers to the self-adjusting

feature of the scheme based on the ratio of the gradients at the adjacent con-
trol-volume faces.
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IV. EVALUATION OF SELECTED SCHEMES

The three discretizatlon schemes were used to solve a variety of two-dimen-

sional test problems. The test problems included transport of a scalar, lami-

nar flows and turbulent flows. For each case the numerical results were com-

pared with a reference solution. In the turbulent flow test cases, emphasis

was placed on the differences between the various numerical results rather than

assessing their accuracy against the experimental data. Such a practice has

been followed primarily because the use of a turbulence model introduces addi-

tional uncertainty in the numerical results and it is difflcult to distinguish

between the model-related errors and the numerical errors. Further, the dif-

ferences between the experimentally and numerically realized boundary condi-

tions make a thorough comparison between the experimental data and calculations

more difficult. To circumvent this difficulty, fine-grid numerical solutions

have been taken as reference solutions for some test cases.

The test problems used are

scalar transport (2-D)

i. recirculatlng flow with a prescribed heat source

2. transport of a step discontinuity in a uniform flow at an angle

laminar flows (2-D)

i. flow over a backward-faclng step

2. flow and heat transfer in a shear-drlven cavity

turbulent flows (2-D)

I. flow over a backward-faclng step

2. flow in a shear-drlven cavity

laminar flows (3-D)

i. flow in a shear-driven cubic cavity

turbulent flows (3-D)

i. annular Jet-induced flow in a duct

2. row of Jets in cross flow

The results for these test cases are presented in the following sections.

4.1 TWO-DIMENSIONAL TEST CASES

4,1,I Scalar Transport

4.1.1.1 Reclrculatln_ Flow with a Prescribed Heat Source (Revisited)

This test case was described in subsection 2.3.3, where the performance of

various schemes was presented in terms of an error parameter. The results for

this problem are now analyzed in greater detail to assess the accuracy of the

selected improved dlscretization schemes. Specifically, these results reveal

the response of the dlscretlzatlon schemes to a variable source.

The @-distributions at the vertlcal midsection (x = 0) of the square domain,

obtained using a uniform 22 x 22 grid, are compared with the exact solution in

Figure 14. At P = 10, both flux-spllne schemes almost reproduce the exact

4O
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solution. CONDIF results are significantly more accurate than those from the

Power-law scheme, which produces a diffused profile, indicating the presence
of false diffusion.

The effect of false diffusion In the Power-law solution Is much more evident

at P = i00. The flux-spllne schemes still give very accurate solution. CONDIF

results, even though superior to those from the Power-law scheme, exhibit sub-

stantial smearing, indicating the need of excessive numerical diffusion to

stabilize the central-difference scheme at this hlgh Peclet number and In the
presence of a variable source.

4.1,1,2 Stev Dlscontlnulty in a Uniform Flow at an AnKle

Thls problem is concerned wlth the transport of a step change in @ In a uni-

form velocity field directed at angle to the x-axis as shown in Figure 15.

Wlth the diffusion coefficient r _ o, _ is transported purely by convec-

tion; consequently, the step change In @ at the upstream boundary Is simply

convected In the flow direction without any smearing. Even though there Is no

source present, thls seemingly simple problem Is a severe test for a convec-

tion-diffusion scheme. The flow Is directed at an angle to the grld llnes,
and the gradient in the cross-stream direction is infinite across the line AB

in Figure 15. Further, there is no physical diffusion in this problem, and

any smearing of the sharp proflle would be a direct consequence of the false
diffusion.

For the given boundary conditions, the problem was solved using a uniform ii x

ii grid. Solutlons were obtained at various flow angles, 8 = 0, 15, 30, and

45 deg. The calculated profiles along the vertical centerllne of the domain

are presented in Figure 16. These results show that the profiles from the

Figure 15.

ylA
Vertical line for which

the values of _ ere plotted

x _

,r
TE88-4505

Transport of a step change In @ in a uniform velocity region.
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improved schemes are less smeared than those from the Power-law differencing

scheme. Thus, the improved schemes introduce smaller, though finite, numerical

diffusion. The linear flux-spllne scheme reproduces the nodally exact solution

at e = 45 deg. For this problem, the flux-spline schemes also suffer from

lack of boundedness. These oscillations are an indication of the dominance of

the "flux" source terms at high Peclet numbers. The CONDIF results, on the

other hand, do not show any oscillatlon.

The over- and undershoot problem is inherent with most higher order dlscretlza-

tlon schemes. Various bounding strategies have been proposed to eliminate the

unreallstlc oscillations in the numerical solution. However, there is little
experience with such methods.

The oscillations associated with the improved schemes would diminish as the

computational grid is refined. Further, in most practical problems, the pres-

ence of physical diffusion will suppress these wiggles. With these points in
mind, the presence of oscillations in the solution for this purely convective

flow was not considered a serious shortcoming of the improved schemes.

The next set of test problems involves the calculation of fluid flow. This

requires an algorithm for the evaluation of the pressure field. For the re-

sults reported here, the SIMPLE algorithm or its improved variant SIMPLER were

used. These algorithms are based on a two-polnt differencing for pressure.

The cubic flux-spline scheme is based on a cubic profile for the mass flux

(pU) and the flux of the dependent varlable. To preserve the accuracy char-

acteristics of the cubic flux-spllne scheme, a higher order representation of

the pressure distribution is required. This calls for further research and

development work, which was not undertaken in the present program. Thus, the

fluid flow calculatlons presented next have been made using the linear flux-

spllne and CONDIF schemes only. Also, the linear flux-spline scheme has been

simply referred to as the flux-spllne scheme.

4.1.2 Laminar F_ows

4.1.2.1 LamSnar F_ow over a Backward-Facln_ Sten

The laminar flow over a backward facing step was computed using three convec-

tion-diffusion schemes--Power-law, flux-spllne, and CONDIF. The configuration

for this test case is shown in Figure 17. Results were obtained for two values

Beginning of computattona] domatn

' tI
I

' 1
3_ _

x lx R

TE86-4099B

Figure 17. Flow over a backward facing step.
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of Reynolds number, i00 and 715. The Reynolds number is based on the mean
veloclty in the inlet channel and the hydraulic diameter of this channel.

computed results are compared with the experlmental data of Haas (Ref 14).

The expansion ratio H/h is 2.

The

The computatlonal domain extended from the inlet plane to eight step heights
downstream for Re = i00 and 32 step heights downstream for Re = 715. A fully

developed velocity profile was prescribed at the inlet, and streamwlse diffu-
sion was neglected at the downstream boundary. The results were obtained using

a 22 x 22 grid for Re = i00, whereas a 32 x 22 grid was used for Re = 715.

The grid spacing was uniform in the transverse direction and increased geomet-

rlcally with an expansion ratio of 1.05 in the axial direction.

Figure 18 shows the computed and measured axial velocity profiles at various
streamwlse locations for Re = 100. At this low Reynolds number, there is very

small false diffusion, and consequently, all three schemes give results that

are in good agreement with the experimental data. The results from the flux-
spllne scheme show slightly better agreement with the experiments. For this

case, CONDIF was run with both Rmex = 1 and i0. Both values of Rmax gave
similar results, indicating, as expected, that false diffusion is negllglble.

The results at Re = 715 are shown in Figure 19. Notice that even though the

use of improved schemes leads to better agreement between the experlmental data

and predictions at stations near the inlet, there is considerable discrepancy

near the experimentally measured reattaclunent point (x = 13.3 h). Similar be-

havior has also been noticed by other investigators (e.g., Ref 15) and is at-

tributed to the deviation of the flow from two-dlmenslonallty at this Reynolds

number. However, it should be mentioned that the reattachment length predicted

by flux-spllne (10.6 h) and CONDIF (8.2 h) is longer than that from Power-law

(7.2 h). This indicates a reduction in the false diffusion with the use of

hlgher-order schemes. The longer reattachment length predicted by the flux-

spllne scheme compared with CONDIF implies that there is less numerlcal dif-

fusion in the former.

4.1,2,2 F_ow and Heat Transfer in s prlven Cavity

The flow in a square cavity, with a moving wall (Figure 20), is a commonly used

test problem for assessing the accuracy of reclrculatlng flow calculatlons.

Here in addition to the fluid flow, heat transfer calculations were also made.

The temperature boundary conditions used were the moving wall at a temperature
of unity and the remaining walls at a temperature of zero. The Prandtl number

of the fluid was taken as unity.

The problem was solved for a Reynolds number, based on the wall velocity and

the cavity height, of 400 on a uniform 22 x 22 grid. The computed results are

compared with a fine-grid (82 x 82) Power-law solution, which is labeled "REF-

ERENCE" in the subsequent figures.

Figures 21 and 22 show the distributions of the u and v velocitles along the
vertlcal and horlzontal midplanes of the cavity, respectlvely. The flux-spllne

solutlon on a 22 x 22 compares very well with the REFERENCE solution. In fact,

the two results are of comparable accuracy. The CONDIF results are also sub-

stantially more accurate than those from the Power-law differencing scheme.
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Figure 18. Axial velocity profiles for Re = 100.
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The temperature distributions along the midsections of the cavity are shown in

Figures 23 and 24. The flux-spllne results are very accurate. For this

problem, the CONDIF results are slightly inferior to those from the Power-

law scheme (PLDS). This behavior is rather surprising since, for all other

problems considered so far, CONDIF results were more accurate than PLDS re-

sults. This point needs further investigation and was considered beyond the
scope of the present work.

The flow in this test case is strongly recirculating. In addition, the pres-

sure gradients, which appear as sources in the momentum equations, are also

significant. The accuracy of the flux-spline results demonstrates the capa-

bility of the scheme to respond to flow skewness and presence of sources. Use

of improved schemes, which do not account for the presence of sources, such as

the skew upwind differencing scheme (Ref 7), for this problem will lead to re-

sults that are only marginally better than those from the Power-law scheme.
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Figure 21.

Figure 22.

0 _ Power-law

0 = rlux-spllne

- CDNDIF

-- Reference

-0.25 0.00 0.25 0.50 0.75 1.00

U TEBb-3511A

me u-velocity profile at the vertical midsection of the cavity.

0.50

0.25

0.00

-0.25

I I I I

0 = Power-law

[D- F1ux-spllne

- CONDIF

--Reference

-0.50 , I I

0.0 0.2

I , I , I ,
0.4 0.6 0.8 1.0

x (y = o.5)
TE86-3512A

The v-velocity profile at the horizontal midsection of the cavity.
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4.1,9 Turbulent Flows

4,1,3,1 Turbulent Flow over a Backward Faclng Step

The first turbulent flow test case considered is the flow over a backward fac-

ing step designated as Stanford case 0421 (Ref 16).

The geometry of the test case is shown in Figure 25. The computational domain

extended from the inflow boundary, shown dashed in Figure 25, to 20 step

heights downstream. Initially, calc_latlons were made using plug profiles at
the inlet. These results were used for studying the effect of grld refinement

as well as for a preliminary evaluation of the two improved differencing

schemes. This was followed by calculations with inlet conditions correspond-

ing to the experiment of Kim (Ref 17). In the experiment, velocity and turbu-

lence data were not measured at the same locations. Velocity profiles are

available at the step and at a distance four step heights upstream. Some tur-

bulence data are also available upstream of the step. To prescribe the condi-

tions at the step, the following approach was taken. For the Power-law scheme,

the region upstream of the step was included in the computational domain. A

stepwlse approximation to the experimentally measured velocity profile was pre-
scribed at the inlet, and the kinetic energy and the dissipation rates were

calculated as follows:

k = O.O04S D2

T
H

h

e = 3 kl'5/H

where U is the mean velocity in the upstream channel. The predicted profiles

at the step were used as inlet conditions for the flux-spllne and CONDIF

schemes.

Beginning of computat%ona] domain

I
I

_L
x txR

Figure 25.

H = 0.0762 m
h = 0.0381 m

L 1 = 0.1524 m
L2 = 2.3368 m

TE86-4099

Geometry for turbulent flow over a backward facing step.
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Table II.

Turbulent flow over a backward facin_ step--

calculated reattachment len_thS[xR/h_h_h_h_h_h_h_h_hl_

Inlet

Grid profiles Pow___eer-law CONDIF Flux-sDllne

32 x 32 Plug 4.4 4.2 4.6

40 x 40 Plug 5.0 4.5 5.3

57 x 57 Plug 5.2 --- 5.3

57 x 57 Measured 5.3 --- 5.7

*Measured value = 7 ± 1

Results were obtained using three grid configurations of varying fineness.

The first grid was a uniform 32 x 32 grid selected without regard to the flow

gradients. The second grid was a 40 x 40 nonuniform grid with more grid points
near the walls and in the shear layer. Finally, computations were made on a

nonuniform 57 x 57 grid to ensure grid independence.

The overall accuracy of the computations can be Judged by comparing the pre-

dicted reattachment lengths with the measured value (7 ± 1 h). The calculated

reattachment lengths are presented in Table II. The flux-spllne scheme shows

an improvement over the Power-law scheme. Further, the flux-spllne results

reach an asymptotic value more quickly than those from the Power-law scheme,
which requires further grid refinement.

The use of the CONDIF scheme results in a smaller reattachment length compared

with the Power-law scheme. This behavior is contrary to that shown by other

improved schemes including flux-spllne. The cause for this behavior shown by

CONDIF needs further investigation. Consequently, the fine grid calculations
were not made using CONDIF.

The agreement between the calculated and measured results improves slightly

when the measured profiles are prescribed at the inlet. Even then, consider-

able discrepancies remain between the two sets of results. Because the flux-

spllne results did not change as the grid was refined from 40 x 40 to 57 x 57,
the present flux-spllne results can be considered grld-lndependent. Some fur-

ther diagnostic runs were carried out by varying the inlet turbulence kinetic

energy and dissipation length scale, but these changes had no influence on the
reattachment length.

The underpredlctlon of the reattachment length for this problem has been noted

in several previous studies (e.g., Ref 16, 18) and probably reflects a defi-
ciency of the two-equatlon turbulence model.
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The results for this test case, even though not conclusive, demonstrate the

advantage of the improved discretization schemes in the evaluation of a physi-

cal model since they have the potentlal of providing a grid-independent solu-

tion without requiring an excessively fine grid.

4,1,_,2 Turbulent Flow in a Shear-Driven Cavity

This test case was selected to evaluate the performance of the flux-spline

scheme for a highly recirculating flow.

The configuration for this flow is identical to that shown in Figure 20. Cal-

culations have been made at a Reynolds number of 105 . Results are presented

for three uniformly spaced grids, 22 x 22, 42 x 42, and 62 x 62. No comparison

has been made with the available experimental data. Instead, emphasis has been

placed on the differences between the flux-spllne and the Power-law results.

Figures 26 and 27 show the velocity profiles along the vertical midsection of

the cavity using the two differencing schemes on various grids. The flux-

spllne results show steeper gradients near the (stationary) lower wall. The

flux spline results on the 42 x 42 grid are essentially grid-independent and

do not change as the grid is further refined. This is in direct contrast to

the Power-law results that are more sensitive to grid refinement.

The effect of grid refinement is much more pronounced on the turbulence quanti-

ties. Figures 28 and 29 show the computed turbulence kinetic energy and turbu-

lent viscosity profiles along the vertical midsection of the cavity (x = 0.5),

respectively. Both flux-spllne and Power-law results on three grids have been

included. Now the effects of grid refinement and differencing schemes are very

clear. It is seen that the turbulence quantities are substantially under-

predicted if the Power-law scheme is used, even on the finest grid. The flux-

spline results approach the asymptotic limit with much fewer grid points. As

the grid is refined from 22 x 22 to 62 x 62, the turbulent viscosity resulting

from the Power-law scheme increases almost seven times. A similar change in

the grid for the flux-spline scheme causes the turbulent viscosity to change

by less than 10Z. Similar trends are observed in the behavior of kinetic

energy.

The drastic changes in the levels of turbulent viscosity predicted by the

Power-law scheme can be explained by examining the transport equations for k

and ¢. In the central region, the shear is very small, and, therefore, the

generation terms in the transport equations are negligible. However, the dis-

sipation (sink) terms are finite. To adequately balance the nonzero sink

terms, an accurate representation of the transport terms is needed. The

numerical diffusion introduced by the use of the Power-law scheme will lead to

a higher value of ¢ since the sink term in its transport equation is propor-

tional to the square of ¢. Since ¢ also appears as the sink term in the

k-equatlon, a low level of k will be predicted. Further, the sink term in ¢

is proportional to l/k; this causes overprediction of the levels of ¢. This

double-edged effect results in very low values of turbulent viscosity.
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Figure 26. The u-velocity profiles along the vertical midsection of the cavity.
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Figure 28.
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Turbulence kinetic energy profiles along the vertical midsection
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(for legends see Figure 28).
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4.2 SUMMARY OF THE TWO-DIMENSIONAL TEST CASES

The performance of the three improved differencing schemes was evaluated by

solving six test problems and comparing the results with available reference
solutions.

For the scalar transport equations both flux-spline schemes produced very accu-

rate results. These schemes also showed the evidence of lack of boundedness

in the purely convective flow. The CONDIF results were also superior to those

from the Power-law scheme. By adding a sufficient amount of numerical damping

in the regions of steep gradients, CONDIF eliminated the wiggles in numerical

solution. To maintain its accuracy for fluid flow calculations, the cubic

flux-spline scheme would require a higher order representation for pressure

also. This work was not undertaken, and the cubic flux-spline scheme was not

used for fluid flow calculations.

The improved schemes showed improvement over the Power-law scheme for fluid

flow calculations in both laminar flow test cases. The linear flux-spllne

scheme results were more accurate than those from CONDIF. A rather surprising

finding was the inferior performance of the CONDIF scheme for heat transfer

calculations in the shear-drlven cavity. However, in an earlier problem in-

volving the transport of a scalar in a reclrculatlng flow, CONDIF results were

more accurate than those from the Power-law scheme. This behavior of CONDIF

requires further investigation.

For the turbulent flow test cases, the flux-spllne scheme was superior to the

Power-law scheme. For the flow over the backward facing step, the use of

CONDIF resulted in a reattachment length that was shorter than that predicted

by the Power-law scheme. This behavior is contrary to that shown by other im-

proved schemes for this problem.

For the fluid flow calculations reported here, the flux-spline results were

obtained using the SIMPLER algorithm (Ref I) and the CONDIF results were ob-

tained with the SIMPLE algorithm (Ref I). For both schemes, the algebraic

equations were solved using a line-by-line tridiagonal matrix algorithm (TDMA).

No convergence difficulties were encountered with either scheme.

4.3 SELECTION OF A SCHEME FOR THREE-DIMENSIONAL FLOWS

For all the test problems considered so far, the linear-flux-spline scheme con-

sistently produced more accurate results. The computational molecule for this

scheme involves only seven points in three dimensions. Further, due to the

one-dimensional nature of the spllne-continuity conditions (even for a multi-

dimensional problem), the extension of linear flux-spllne scheme to three di-

mensions is relatively straightforward. Due to these attributes, the linear

flux-spline scheme was selected for incorporation into a computer program for
three-dimensional flows.
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4.4 THREE-DIMENSIONAL TEST CASES

4.4.1 Laminar Flow

The flow situation under consideration is shown in Figure 30. Due to symmetry

considerations, the computational domain extended only half the cavity width
in the lateral (z) direction.

Computations have been made at a Reynolds number, based on lld velocity and

cavity depth, of 400. Results have been obtained using a uniformly spaced 22

x 22 x 12 (x, y, z) grid. The present numerical results have been compared

wlth the solution of Ku et al. (Ref 19) obtained using a pseudo-spectral method

(25 x 25 x 13 modes). This solution has been designated as "REFERENCE" in the

subsequent figures.

Figures 31 and 32 show the velocity profiles of the u-component on the vertical

centerline and v-component on the horizontal centerline of the symmetry plane

z = 0.5, respectively. The flux-spline results are in better agreement wlth

the reference solution than the Power-law results. In particular, the flux
spline results exhibit sharper peaks than the Power-law solution due to less

numerical diffusion in the former.

The flow patterns in the y-z plane at x = 0.5 obtained using the two dlscretl-

zatlon schemes are shown in Figure 33. The flux spllne scheme predicts a more

intense flow in the lower section of the cavity, especially in the vicinity of
the eye of the vortex.

Figure 30.
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Three-dimensional cubic cavity.

59



>-

1.0

0.8

0.6

0.4

0.2 ou_ n -- Reference solution

A = Power-law

o = Flux-spllne

0.0 . , . - . i . , . , . , ,

- 0.6 - 0.4 - 0.2 0.0 0.2 0.4 0.6 0.8 1.0

U TE88-4510
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Figure 33.
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Shear driven cavity: flow pattern in the y-z plane at x = 0.5.

4.4.2 Turbulent Three-Dimensional Jet-lnduced Flow in a Duct

4.4.2.1 Three-Dlmensional Annular Jet-Induced Flow in a Duct

This test case is one of the experiments being conducted under NASA HOST Ele-

ment B for turbulence model evaluation. The test rig, shown in Figure 34,

consists of five annular swirling or nonswirllng streams issuing into a duct

of rectangular cross section. There is provision for radial Jets at specified

axial locations. For the present test case, all streams are nonswirllng and

there are no primary Jets. Due to symmetry of the problem, the computational

domain includes only one quarter of an annular stream. In the cross section,
the computational domain is bounded by symmetry lines in the z-direction and

by a symmetry line and a wall in the y-directlon.

In the streamwise direction, the computational domain extended from the inlet

plane to four duct widths downstream. Experiments indicated rather small

changes in the velocity distributions beyond this location.

Computations were made on two grids, 22 x 17 x 17 and 37 • 27 x 27. In the

first grid, which will be referred to as "coarse," the grid spacing was uniform

in the cross section. In the refined grid, to be referred to as "fine," a
finer spacing was used within and near the Jet. In both cases, the grid spac-
ing in the •-direction was finer near the inlet.

This test problem was solved using the Power-law and flux-spllne schemes. Like

the previous turbulent flow test cases, the emphasis has been placed on the

differences between the results from these schemes, and very limited comparison

has been made with the experimental data. This has been done primarily because
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TE88-4513

Figure 34. Geometry for an annular Jet-lnduced flow in a duct.

there is still considerable uncertainty about the adequacy of the turbulence

model for such flows. Thus, the disagreement between the numerlcal and experl-

mental results may be due to the numerical inaccuracy or the inadequacy of the

turbulence model. However, for a given turbulence model, k-¢ model in this

study, the flux-spllne results are more accurate.

Figure 35 shows the axial velocity profiles on the z = 0 plane (containing the

centerllne of the annular stream) at selected streamwlse locations obtained

using the coarse grid. For this calculation, plug profiles were prescribed at

the inlet plane because the grid in the cross section was too coarse to allow

for a distribution of various quantities. The use of the flux-spllne scheme

results in sharper peaks and a longer reclrculatlon zone at the center. At all

streamwlse locations, the profiles resulting from the Power-law scheme are more

smeared than those from the flux-spllne scheme. This trend indicates the pres-

ence of excessive numerical diffusion in the Power-law solution.

Figure 36 shows the comparison of the predicted centerllne velocity distribu-

tion with the experimental data. The flux-spline results are in better agree-

ment with the experimental data at locations near the inlet. However, further
downstream the velocity is considerably underpredicted.

The results for the fine grid are displayed in Figure 37. For this calcula-

tion, the experimentally measured profiles of axial velocity and kinetic energy

were prescribed at the inlet. The trends observed in the coarse-grid solutions

are also noticed in this grid. The flux-spline scheme is able to preserve the

peaks and produces profiles that are less smeared. Both schemes respond to

grid refinement, especially near the inlet. To ensure grld-lndependence, cal-

culations on a still finer grid would be required.
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Variation of the centerllne axial velocity, coarse grid

(for legend see Figure 35).

Due to the limitations of the resources, a further grid refinement was not

undertaken. However, based on the experience wlth two-dlmensional flows, the

flux-spline results are not expected to change signiflcantly as the grid is
further refined.

Figure 38 shows the computed centerllne velocity variation on the flne grid.

The flux-spllne results are in good agreement wlth the experimental data. Both

sets of calculations, however, now predict a stronger recirculatlon zone.

4.4.2.2 Row of Jets In Crossflow

This three-dlmenslonal turbulent flow test case, based on the experiments of

Khan (Ref 20), involves a row of Jets injected normal to the main flow in a

duct of rectangular cross section. The physical situation for the particular

case under consideration is shown In Figure 39. The Jet diameter is 0.0254

m. The pitch (Jet centerllne-to-centerllne distance) Is four Jet diameters

and the height of the test section is also four Jet diameters.

The symmetry of the flow in the lateral (z) direction allows the computations

to be confined between the jet centerllne and the centerllne between the Jets.

In the axial direction, the computational domain extends from 5 Jet diameters

upstream of the leading edge of the Jet to 24 Jet diameters downstream of the

trailing edge of the Jet. In the y-dlrection, the computatlonal domain extends

from the floor of the wind tunnel to the roof, or four Jet diameters.

At the inflow boundary (x/D = -5.5), plug profiles were assigned for all vari-

ables. The streamwlse diffusion was neglected at the outflow boundary. The
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Variation of centerline axial velocity, fine grid.

clrcular Jet was approximated by an equivalent area rectangle with the longl-

tudlnal side equal to the Jet diameter. The profiles at the exit of the Jet

were also taken as uniform. These assumptions may influence the degree of

agreement between the experimental data and numerical predictions. Since the

primary objective of these calculations is to stress the accuracy consideration

without analyzing the consequences of the turbulence model being used, these

slmplified boundary conditions are considered adequate.

Computations were made on two grids of varying flneness--32 x 17 x 12 (coarse)

and 37 x 22 x 17 (fine). Both grids were nonuniform with finer grid spacing

near the Jet.

The results on the coarse grid are presented in Figure 40 In the form of the

axial velocity profiles at four streamwise locations. These calculations show

that both differencing schemes yield results that are significantly different

from the experimental data. The numerical results, however, indicate that

flux-spllne calculations contain less numerical diffusion and hence are less
smeared compared with those from the Power-law scheme. This is evident from

the profiles at x/V = 4. The differences between the predictions and the ex-
perimental data may be due to the coarseness of the mesh used and/or the inade-
quacy of the turbulence model. To reduce the numerlcal errors, calculations

were repeated on a finer grid. These results are shown in Figure 41.

The use of the fine grid reduces the differences between the results from the

two differencing schemes. The smeared Power-law profile indicates the presence

of excessive numerical diffusion even on this grid. Although differences be-

tween the calculated and experimental results are significant, further grld

refinement may still be necessary to ensure grid independence of the present
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Figure 39. Flow geometry for "a row of Jets in crossflow."

calculations. Calculations for the same geometry using the bounded skew upwind

differencing scheme BSUDS2 (Ref 21) indicate that even a 74 x 42 x 22 grid may

not be sufficient to achieve grid independence, although the use of such a

fine grid was not considered in this study.

The effect of grid refinement is more pronounced on the flux-spllne results,

especially at x/D = 4. The Power-law scheme responds slowly to the change in

grid. Such behavior is to be expected due to higher order of accuracy for the
flux-spllne scheme. Even on the fine grid, the Power-law solution is dominated

by the false diffusion that may completely overwhelm the physical diffusion.

Even though there are conslderable differences between the experimental results
and calculatlons presented here, the effects of grid refinement and change of

differencing scheme are very slmilar to those seen in an earlier study (Ref

22) for the same test case.

This test case revealed some interesting issues related to the evaluation of

the differencing schemes as well as the turbulence models. These prlmarily

concern the specification of the inlet boundary conditions for the turbulence

quantities. If a diffusive scheme, such as the Power-law scheme, is used for

dlscretlzlng the equations and if the flow is reclrculatlng, i.e., there is
sufficient internal generation of turbulence, the results are insensitive to
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The matrix equation (148) is nomlnally linear because the elements of matrix A

depend on the velocity components themselves, and also the source term b may

be function of the dependent variables. In the present implementation, the

nonlinearities are handled using the successive substitution (Picard) tech-

nique, in which the coefficients and the source terms (including those arising

from the flux-spline formulation) are calculated from the values of the depen-

dent variables from the previous iteration.

The direct solution of equation (148) was accompllshed by the use of the Yale

Sparse Matrix Package, YSMP (Ref 13). It solves the linear system A_ = b by

a sparse matrix variation of the LU decomposition procedure, where L and U are

the lower and upper trlangular matrices. YSMP selects the elements of the main

dlagonal of the matrix as the pivots during the decomposition process. It is,

therefore, necessary that the original coefficient matrix not contain any zero

element on the main dlagonal. As shown in Figure 44, the absence of pressure

in the continuity equation leads to zeros along the main diagonal. This dlffi-

culty can be overcome in several ways, e.g., by rearranging the equations. In

the present study, small nonzero elements are introduced along the main diago-

nal in the continuity equation, and equation (148) is recast in terms of update

vector 4@ as follows:
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A(_)=b-A _*
(149)

where _@=_ - _* and @* is the value from the previous iteration or ini-

tial guess. Now, equation (149) is replaced by:

A' (A@) = b-A_*
(150)

where A' is the perturbed matrix that contains small nonzero elements along

the main diagonal. Since A' is not used on the right side, the converged solu-

tion of equation (150) represents the solution of equation (148) with the con-

tinuity equation properly satisfied. An added advantage of solving the equa-

tions in terms of changes (A_) is that it reduces the round-off errors.

Since the repeated numeric factorization of the coefficient matrix A is an ex-

pensive process, considerable execution time can be saved by not decomposing

the coefficient matrix at each iteration. Instead, the decomposed matrix from

a previous iteration is used. In effect, equation (150) is replaced by

A*(A_) = b-A@*
(151)

where A* is the old matrix decomposed at an earlier iteration, but A is the

current coefficient matrix. In each iteration of this type, the right side is

updated and the solution is obtained by forward and backward substitution using

the previously computed decomposition. The cost of such an iteration is only

i0-15_ of a full decomposition iteration.

5.2 TREATMENT OF THE TURBULENCE QUANTITIES

The turbulent flow calculations in this study are based on the k-¢ model,

which requires the solution of two additional partial differential equations,

after every iteration of the flow equations, to provide a new viscosity field.

The two turbulence equations are highly coupled and nonlinear, due to their

source terms, and difficult to solve. Due to these features, a direct coupled

solution of these equations does not prove satisfactory and causes instabili-

ties. Vanka (Ref ii) solves the k and ¢ equations in a decoupled line-by-

line manner by holding the other variable fixed. In the present work a

slightly different approach was taken. Instead of solving the equations along

a line and marching through the domain, the equations are solved sequentially
over the entire computational domain using a line-by-line TDNA. The equations

are solved repeatedly (typically 7 or 8 times) with updated source terms until
K and ¢ are sufficiently well converged. Such a procedure is expected to

readily account for the ellipticity of the recirculating flows.

5.3 PERFORMANCE OF THE ALGORITHM

The coupled solution approach combined with the flux-spline scheme was applied

to laminar flows in a square cavity and a planar sudden expansion and turbulent

flow over a backward facing step. The details of these test cases are given

in Table IIl. The number of iterations required for convergence and the execu-

tion times for the coupled approach are compared with those for the sequential

SIMPLER algorithm in Table IV.

The performance of the coupled algorithm is nearly independent of the Reynolds

number and the mesh aspect ratio. For the test problems considered, a coupled
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Case No,

Laminar flows

Table III.

Test cases,

Reynolds Grid

Flow number (uniform)

1 Cavity 400

2 Cavity i000

3 Cavity 400

4 Cavity i000

5 Expansion 400

6 Expansion 400

7 Expansion 400

Turbulent flows

8 Backward facing step 5.6xi05

9 Backward facing step 5.6xi05

22x22

22x22

40x40

40x40

22x12

22x22

42x22

22x22

42x22

Table IV.

Number of Iterations required and execution times.

Case No,

No. of iterations

SIMPLER Direct

Execution times*

SIMPLER Direct

1 62 17 18 6

2 84 30 24 8

3 130 21

4 140 40

5 106 47 16 5

6 122 48 35 i0

7 152 42

8 800 39 400 801

9 224 581

1 Convergence criteria for the turbulent flow cases are not same.

* IBM 3084 cpu seconds

solution of the continuity and momentum equations reduces the execution times

by a factor of 3-5 compared with the SIMPLER algorithm. These findings are

similar to those in earlier studies (Ref 10-12) where a lower-order convection-

diffusion scheme was employed.

The combination of a coupled solution approach and an improved discretlzatlon

scheme offers a twofold advantage over the use of a sequentlal approach with a

lower-order discretlzatlon scheme. For comparable accuracy, an improved scheme

requires fewer grid points than a lower-order scheme. In addition, on a grid
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the use of a coupled solution approach reduces the execution times compared

with the sequential solution algorithms. Thus, when the two are combined, a

significant reduction in execution times results. The advantage is expected
to increase at high Peclet numbers and on finer grids.

5.4 PLANE-BY-PLANE MARCHING PROCEDURE FOR 3-D FLOWS

The coupled solution approach for fluid flow calculatlons presented previously
in a two-dlmenslonal context can easily be extended to three-dimensional flows.

Such a procedure, however, will require a large amount of computer storage for
LU factorizatlon due to the increased number of nonzero elements in the coef-

ficient matrix. These memory requirements are beyond the capacity of the cur-

rently available computers. Hence, an alternate strategy needs to be devised
for the extension of the coupled solution approach to three dimensions. In the

present study, the equations are solved in a plane-by-plane manner.

The predominant flow direction is selected as the marching direction. The

equations in the planes normal to the marching direction are solved in a
coupled manner using YSMP. There are two options available as to which vari-
ables should be solved slmultaneously. The three veloclty components and pres-

sure can be solved in a coupled manner or only the cross-stream (in-plane)

velocities and pressure are solved impllcltly and the axlal veloclty is solved

separately. The first approach Involves more nonzero elements in the coeffi-
cient matrix and hence the cost of factorlzatlon is high. In the present im-

plementation, the second approach has been followed; however, note that no com-
parative study was conducted to evaluate the performance of these two alternate

strategies.

In the present plane-by-plane solution procedure, the treatment of in-plane

velocltles and pressure is identical to that in a two-dlmenslonal problem.
The additional features are related to the solution of the velocity component

along the marching (axial) direction. It is necessary to ensure that the axial

velocity component satisfies the axial momentum and continuity equations simul-

taneously. This has been accomplished by followlng the procedure described in

Ref 25. The essential steps in this method are as follows.

The axial momentum equation for any cross-stream plane can be written as:

ap Up = Z anb Unb + b - _v 18_x) (152)

where nb refers to the neighbors in the cross section and Av is the volume

of a control volume.

In equation (152), b includes the physical source, the net transport in the
axial direction and the axial pressure gradient given by the currently avail-

able pressure field. (gp/gx) is the correction that must be applied to

the calculated pressure gradient so that the axial velocity field at any plane

yields the correct cross-sectlonal flow rate M:

M=/pUpdA (153)

The pressure gradient (gp/gx) should be such that both equations (152) and

(153) are simultaneously satisfied. This is accomplished as follows.
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For a fixed set of coefficients, there is a linear relationship between Up
and (Sp/Sx). At a given cross-sectional plane, equation (152) can be writ-
ten as:

Up = Up + dp (154)

The constants Up and dp can be evaluated by solving equation (152) with

two different values of (8_/8x). Wlth known values of these parameters,

the required pressure gradient is calculated by enforcing equation (153).
That is

M = I p Up dA = I pUp dA + J" p dp dA (155)

or

A

8_ M- J" p Up
=J'pd dA

P
(156)

The final U-field is obtained by substituting the calculated value of (8_/8x)
in equation (154). The pressure values at all locations downstream of the

plane under consideration are also corrected using the calculated pressure
gradient.

The plane-by-plane solution procedure is supplemented by the solution of a

three-dlmenslonal pressure equation. This pressure field provides a means by

which the elliptic effects are transmitted over the entire three-dlmenslonal

domain. In the present implementation, the pressure equation is identical to

that in the SIMPLER algorithm. The pressure equation is solved after each

sweep of the computational domain.

5.5 EVALUATION OF THE PLANE-BY-PLANE SOLUTION TECHNIQUE

The solution procedure described previously was applied to two model laminar

flow problems. For these calculations, the Power-law differencing scheme was

used. The flow situations considered are sketched in Figure 45. They are the
following:

i. flow in a three-dimensional sudden expansion

2. flow in a rectangular box with a transverse jet

These situations represent, in a simplified manner, the flow in a gas turbine
combustor.

The calculations presented here were started from zero initial guess for the
velocity components and pressure.

5.5.1 Three-Dimensional Sudden Expansion

For the flow in a three-dimensional expansion, a 4:1 area ratio is considered.

Due to symmetry considerations, computations have been restricted to a quarter
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section of the duct. Two values of Reynolds number, defined as Re = Uin H/v,

of 100 and i000 are considered. Figures 46a and 46b show the convergence rate

of the solution procedure for Reynolds numbers of I00 and i000, respectively,

on a uniform 22 x 12 x 12 grid. In these figures the absolute sum of residuals

at all internal points for each equation are plotted against the number of

iterations, which refer to the number of sweeps of the computational domain.

5.5.2 Flow _H a _ox with Transverse Jets

This flow was computed for a Reynolds number, Re = Vln H/v, of 500 using a

uniform 22 x 12 x 12 grid. The convergence behavior of the solution procedure
is shown in Figure 47.

Both the flow situations considered here involve significant reclrculatlon

zones similar to that in a gas turbine combustor. On the grid used, the

plane-by-plane procedure leads to convergence in i0 to 15 iterations. This

indicates that the proposed procedure is robust. This solutlon technique was

also used for solving the 3-D Jet in cross flow turbulent test case described

in section 4.4.2 on the coarse grid. Again, convergence was achieved in about

20 iterations. In all these calculations the Power-law scheme was used.

5.6 COST COMPARISON

The plane-by-plane solution procedure is rapidly convergent and robust. A cost

comparison with the iterative SIMPLER algorithm, however, revealed that the

proposed procedure was not cost-effectlve, at least on the grids used. This

high cost of solution is attributed to need to factorize the coefficient matrix

at each cross-sectlonal plane, which is necessary to the rapidly changing na-

ture of flow in the axial (marching) direction. Under specialized conditions,

the factorized coefficient matrix at an upstream plane can be used for computa-

tions at a partlcular plane. Such a practice, however, cannot be used for a
general flow.

5.7 NOTE ON THE USE OF FLUX-SPLINE SCHEME

The objective in this program was to combine the plane-by-plane strategy with

the flux-spline scheme. Initial exploratory runs indicated that for sample

problems considered, such a combination did not lead to convergence except on

very coarse grids. It should be mentioned that no such difficulty was encoun-

tered in two-dlmensional flows where all equations were treated in a fully

coupled manner. The only new feature in three-dimensional flows is the use of

the plane-by-plane solution strategy. It is therefore likely that the decou-

pling in the marching direction is responsible for the lack of convergence when

the flux-spline discretization scheme is used.
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VI. CONCLUDING REMARKS

6 .i SUMMARY OF THE PRESENT WORX

The objective of the present program was to develop accurate and efficient

numerical schemes for predicting the flow field in gas turbine combustors.

To improve the numerical accuracy various dlscretlzatlon schemes available in
literature were evaluated on the basis of several criteria. Three schemes,

linear flux-spllne, cubic flux-spllne, and CONDIF, were incorporated into a
computer program for two-dimenslonal flows and were used to solve a series of

test problems. The test problems included scalar transport, laminar flows,

and turbulent flows. The numerical solutlons were compared with available

analytical solutions, experlmental data, or fine grid numerlcal solutlons.

For all problems considered, the linear flux-spllne scheme was conslstently
superior to other schemes and was selected for incorporation in a computer

program for three-dlmenslonal flows.

The linear flux-spllne scheme was used to solve several three-dimenslonal

flows. For a given number of grid points, the flux-spllne scheme produces re-

sults that are far superior to those from the (lower-order) Power-law differ-

encing scheme. Further, it has the potentlal of providing a grid independent

solution without requiring an excessive number of grid points.

To improve the computational efficiency of the overall solution procedure, a
coupled solutlon approach for the fluid flow equations was adopted. In this

approach, the discretlzed continuity and momentum equations are solved slmul-

taneously using a sparse matrix inversion technique. The coupled approach,
when used in conjunction with the linear flux-spline scheme, reduced the execu-

tion times by factors of 3 to 5 compared with the currently used sequential

(SIMPLE-based) algorithms.

The memory restrictions of the present computers do not allow a coupled solu-
tion of all fluid flow equations in three-dlmensional flows. To circumvent

this dlfflculty, a plane-by-plane solution strategy was developed. In this

procedure the cross stream velocities and pressure in a plane normal to the

predominant flow direction are solved in a coupled manner and the streamwise

veloclty is solved separately. The plane-by-plane technique worked satisfac-

torily when used with the Power-law dlscretlzatlon scheme. However, conver-

gence could not be attained with the flux-spllne scheme except on very coarse

grids. This aspect needs further consideration.

6.2 REC01_qENDATIONS FOR FURTHER WORK

The llnear flux-spllne scheme used in this work for majority of calculatlons

is susceptible to spatlal oscillatlons for hlghly convective flows on coarse

grids. Such a behavior may cause difficulties when the scheme is used to dis-

cretlze the transport equations of the "always positive" quantities such as
the turbulence kinetic energy. It would be desirable to develop a bounded
scheme that is free of the oscillations.

The CONDIF scheme performed satisfactorily except for the heat transfer problem

in the shear driven cavity and turbulent flow over a backward facing step.

The causes for this anomaly should be identified and the scheme should be
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tested for more problems involving fluid flow. An attractive feature of CONDIF

is its simplicity and ease of programming.

For the test problems considered here, the cubic flux-spline scheme performed

very well. It should be extended to fluid flow equations.

The causes leading to the lack of convergence of the plane-by-plane solution

strategy when used with the flux-spllne scheme should be identified. In addi-
tion, the use of other solution algorithms, such as the multlgrld techniques,
should be explored.
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